
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 16, 187-198 (1993) 

AN EFFICIENT THREE-DIMENSIONAL SEMI-IMPLICIT 
FINITE ELEMENT SCHEME FOR SIMULATION OF FREE 

SURFACE FLOWS 

Y. S. LI AND J. M. ZHAN 
Department of C i d  and Structural Engineering, Hong Kong Polytechnic, Hung Horn, Kowloon, Hong Kong 

SUMMARY 
An efficient semi-implicit finite element model is proposed for the simulation of three-dimensional flows in 
stratified seas. The body of water is divided into a number of layers and the two horizontal momentum 
equations for each layer of water are first integrated vertically. Nine-node Lagrangian quadratic isoparamet- 
ric elements are employed for spatial discretization in the horizontal domain. The time derivatives are 
approximated using a second-order-accurate semi-implicit time-stepping scheme. The distinguishing feature 
of the proposed numerical scheme is that only nodal values on the same vertical line are coupled. Two test 
cases for which analytic solutions are available are employed to test the proposed scheme. The test results 
show that the scheme is efficient and stable. A numerical experiment is also included to compare the 
proposed scheme with a finite difference scheme. 
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1. INTRODUCTION 

In coastal areas where salt water and fresh water meet, horizontal and vertical density gradients 
are produced. Also, upwelling sometimes occurs in coastal areas. Three-dimensional finite 
difference models have been extensively used in the last 20 years to  simulate such flows. However, 
the use of three-dimensional finite element models to solve coastal flow problems is still scarce 
compared with the number of finite difference models available in the literature. In many 
applications the coastal configurations are very complicated and the ability of the finite element 
method to better represent arbitrary configurations should be exploited. 

Koutitas and O’Connor’ used a composite finite difference/finite element numerical procedure. 
The finite element Galerkin method was applied over depth using linear shape functions, while 
a finite difference approximation was employed for the horizontal domain. Signorini’ used 
two-dimensional linear shape functions associated with three-node triangular elements for the 
horizontal domain. The vertical coupling between different levels was achieved by a finite 
difference scheme. Trosch3 employed 20-node brick elements to compute the flow in a channel of 
constant depth with closed ends driven by wind. Although only 45 elements were used, the 
resulting set of simultaneous algebraic equations, after time discretization by an implicit finite 
difference scheme, had a total of 1080 degrees of freedom. The system matrix also had a large 
bandwidth, since each brick element had 68 degrees of freedom. Kawahara et aL4 presented 
a multilayer finite element model with vertical integration applied to each water layer. The model 
was applied, using triangular elements, to study the current flow for regional development 
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planning analysis in Japan. Laible' used Hermitian polynomials involving the bottom and 
surface velocities and their gradients in the vertical direction to approximate the variation in flow 
velocities with depth. The wave equation model originally developed by Lynch and Gray6 was 
then solved using nine-node Lagrangian quadratic isoparametric elements with integral lumping. 
This method was later extended to include two-layer flow  system^.^ Lynch and Werner' used 
six-node elements with linear triangles in the horizontal and linear variations in the vertical for 
the flow velocities and the surface elevation was solved using essentially a two-dimensional wave 
equation. 

In this paper an efficient semi-implicit finite element model is proposed for the simulation of 
three-dimensional flows in stratified seas. The body of water is divided into a number of layers, 
the thicknesses of which can vary with depth. In addition, the thicknesses of the surface and 
bottom layers also vary horizontally owing to the variation in the sea level and in the bottom 
topography respectively. The two horizontal momentum equations for each layer of water are 
first integrated vertically so that only two-dimensional differential equations have to be solved. 
Nine-node Lagrangian quadratic isoparametric elements are then employed for spatial discretiz- 
ation in the horizontal domain. The time derivatives are approximated using a second-order- 
accurate semi-implicit time-stepping scheme. The distinguishing feature of the proposed numer- 
ical scheme is that only nodal values on the same vertical line are coupled and hence only a small 
set of simultaneous algebraic equations is required to be solved at each horizontal nodal point at 
each time step, which leads to a drastic reduction in computer time. Two test cases for which 
analytic solutions have been obtained are used to test the validity of the proposed scheme. 
Finally, a numerical experiment is included to compare the proposed scheme with a finite 
difference scheme. 

2. GOVERNING DIFFERENTIAL EQUATIONS 

The hydrodynamic equations can be written as 

(2) 
1 aP 1 atyx +2+!%), d T  

P dY P ( ax aY 
au d(uv) d ( V V )  qwv) -+++-+-+fu+--=- ~ 

at ax ay aZ 
au av aw -+- + - = 0, 
dx a y  JZ (3) 

where u, v and w are the x-, y- and z-components of current respectively in Cartesian co-ordinates, 
with z, the vertical co-ordinate, increasing upwards, p is the density of water, P is the pressure, f is 
the Coriolis parameter, which is twice the value of the vertical component of the Earth's rotation, 
and zij are interfacial shear stresses. 

The pressure distribution in the vertical is assumed to be hydrostatic: 

p =Po + P L d V  -z)+ I ,  (4) 
where q is the water surface elevation above the reference datum, Po is atmospheric pressure, pL is 
the density of water on the free surface and I is the barwlinic pressure component. 

The body of water is divided into a number of layers (see Figure 1) and the following notations 
are used: 

U,  = s,:*+' udz, V, = IzI+' vdz, ( 5 )  
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Figure I. Vertical arrangement of grid points in an x-z section 

i.e. u k  and V, are the discharges per unit width in the x- and y-directions respectively of layer k. 
The following approximations usually employed in 2D flow models are used: 

where h k = z k + ,  -zk  is the thickness of the kth layer. 

ating the above approximations, are 
The vertically integrated form of the momentum equations (1) and (2) for each layer, incorpor- 

where v is the horizontal eddy viscosity. 
The following assumptions about z,, and tyz are made: 

where tik - and t i k  are the mean velocities of layers k - 1 and k respectively and &k is the vertical 
eddy viscosity. A similar expression is used for zkyz. 
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The bottom stress components are assumed to be of the following form: 

T i z  = PlCISUl, t :z = P I U S  v, , (10) 

where S = J [ U f +  V:]/h: and CI is the friction parameter. 

The surface stress components T;: and T;: are known functions of x, y and t. 
Besides using slip conditions, an alternative no-slip bottom boundary condition can be used. 

Integration of the continuity equations (3) gives 

In the present calculations the vertical eddy viscosity is assumed to be of constant value. 
The boundary conditions are zero flow normal to a solid boundary and specified water surface 

elevation or normal flow velocities of all layers at an open boundary. 

3. FINITE ELEMENT FORMULATION 

The strategy adopted to reduce the computation time is to expand each term of the governing 
equations (7) and (8) for each layer as previously applied to the simulations of 2D flows, rather 
than each dependent variable, in terms of the unknown nodal values.' Some typical expansions 
are given below: 

Substitution of the finite element approximations given above into equation (7) for layer 1 yields 
the following element matrix equation for an element A,  after application of the Galerkin 
criterion: 
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where A,  B,  C, D, E,  GI and G2 are N x N matrices, with 

and { ) denotes a column vector. 
The line integral resulting from the integration of the momentum equation does not appear in 

(13), because all the turbulent stresses z,,, T , ~ ,  zyx and ryy are assumed to be negligible at the open 
boundary in the present model. 

Similar equations can be obtained for V,, U,,  &, ... , U, and Y'. In this scheme, Lagrangian 
quadratic isoparametric elements with nine nodes are used. Following Gray and van 
Genuchten,' O numerical integrations are carried out using Simpson's rule. The coincidence of the 
nine integration points of Simpson's rule with the nine nodes of the Lagrangian quadratic 
isoparametric elements greatly enhances the computational efficiency. Since Qi has a value of 
unity at node i and is zero at all other nodes, is zero at the integration points unless i = j and 
thus A and E are diagonal matrices. 

The vertical velocity w k  can be obtained from the continuity equation (3) after vertical 
integration as follows: 

Equation (13) is now finite differenced in the time domain by a semi-implicit one-step method as 
follows: 

A {( 2EZ u2y+A'+(h -- 2E2 ">'-At] 
+pLgD' (v ' )  + D ( P b }  + D { I : }  - - - - 

2 h1+h ,  h2 l+h2  h2 

(1 6) 
Since the stress terms between layers, { 2 ~ ~ U , / h ~ ( h ~  + h 2 ) }  and ( 2 ~ ~  U l / h , ( h l  + h Z ) } ,  the Coriolis 
term f{  6 )  and the bottom friction term E{ V,} in equation (13) are associated with a diagonal 
matrix ( A  or E )  in addition to (d U , / d t } ,  they are also represented semi-implicitly in equation (16). 
The semi-implicit representation of the stress terms between layers and the bottom friction term 
will greatly enhance the computational stability. The implicit representation of the Coriolis term 
will also improve the computational stability if the numerical model is applied to simulate 
large-scale flows. The same time-stepping scheme is applied to the other ordinary differential 
equations for V,, U,, V,, ... , U, and V,. 
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Since A and E are both diagonal matrices, only nodal values on the same vertical line are 
coupled and hence only a small set of simultaneous algebraic equations is required to be solved at 
each horizontal nodal point. Knowing UL'"' and V:"', the water surface elevation tf+"' can be 
solved from 

4. VERIFICATION OF THE NUMERICAL SCHEME 

4.1. Numerical experiment 1: flow in a rectangular channel 

This numerical experiment is concerned with the simulation of a steady two-dimensional, 
wind-induced flow in a uniform rectangular channel of length lo00 m, width 4b0 m and depth 
h= 10 m. The free surface is acted on by a constant wind-induced stress zf;Z+' = 1.5 N m-' as 
shown in Figure2. The water body was divided into eight equal layers and the following 
parameters were adopted: Ax=Ay= l00m; A t = 5  s; v=O;  f=O;  p=1025 kgm-3. 

Using the no-slip condition at  the channel bed, the following uniform and steady state analytic 
solution for a well-mixed channel with constant vertical eddy viscosity E was known:' 

u = t,": ~ ( h  + q)(3a - 2)/4~p, where c = (12 + z ) / (h  + q). 
The computed steady state vertical velocity profiles at the mid-length of the channel, where the 
free surface elevation, is zero and the corresponding analytic solutions for two different values of 
the vertical eddy viscosity E are shown in Figures 3(a) and 3(b). It can be seen that the computed 
results agree very well with the analytic solutions. 

Wind Stress 5 '2- -1.5Nm'* 

Figure 2. Geometry and horizontal mesh used in numerical experiment 1 
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Figure 3(a). Comparison of analytic and computed u-velocity profiles for flow in a rectangular channel with 
e=O.O1 m2s-I 
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Figure 3(b). Comparison of analytic and computed u-velocity profiles for flow in a rectangular channel with 
e=0.065 m2s-' 
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4.2. Numerical experiment 2: $ow in an annular section 

This numerical experiment is concerned with the three-dimensional Row in an annular section 
driven by tidal forcing at the open boundary with angular frequency w= 1.41 x s- '  (period 
12.4 h). The problem geometry and the horizontal mesh are shown in Figure 4. The water depth 
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Figure 5(a). Comparison of analytic and computed u-velocity profiles for flow in an annular section 
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Figure 5(b). Comparison of analytic and computed o-velocity profiles for flow in an annular section 
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Figure 6. Comparison of variations of analytic and computed surface velocities at point A over one tidal cycle 
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Wind Stress 
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Figure 7. Geometry and horizontal mesh used in numerical experiment 3 
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Figure 8(a). Comparison of computed u-velocity profiles for flow in a closed rectangular basin 
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Figure 8(b). Comparison of computed 2:-velocity profiles for flow in a closed rectangular basin 

h varied quadratically with r and a sufficiently large bottom stress coefficient was employed to 
enforce no slip at the bottom. The water body was divided into eight equal layers and the 
following parameters were adopted: A8=n/16  rad; At=279 s; T L ; Z + ' = T ~ + '  Y Z  = f = v = O ;  h=hor2 ,  
with ho = 3.048 r ; m- '; rl = 60 960 m; r2 = 152 400 m; cohZ/E = 10; surface elevation at r2 taken as 
q = 0-1 cos(28) cos(wt); linear bottom friction parameter r S  = 10 m s- '. 

The linearized analytic solution for this test case can be obtained using the method given in 
Reference 1 1. The computed vertical velocity profiles at mesh point A together with the analytic 
solutions at four points in time are shown in Figures 5(a) and 5(b). The time variations of the 
analytic and computed surface velocity components at point A over one tidal cycle are depicted in 
Figure 6. It can be seen that the agreement with the analytic solution is very good in all cases. 

4.3. Numerical experiment 3: j?ow in a closed rectangular basin 

This numerical experiment is concerned with the simulation of three-dimensional wind- 
induced flow in a rectangular basin with dimensions and rotation representative of the North Sea 
as considered by Davies and Owen12 (see Figure 7). The water initially at rest was subject to 
a uniform wind stress of 1.5 Nm- '  in the direction of decreasing y, corresponding to a north wind 
blowing over the North Sea. The water body was divided into six equal layers and the following 
parameters were adopted Ax=400 km/8; Ay=800 km/16; h=65  m; p =  1025 kgm-3; f=0*44h-'; 
v = O  A t =  100 s; ~=0 .065  rn's-'; linear bottom friction parameter aS=0.002 ms-'. 

The computed vertical velocity profiles at the centre of the basin (point B in Figure 7) 75 h after 
the onset of the wind field are shown in Figures 8(a) and 8(b) together with the computed 
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solutions by Davies and Owen.” It can be observed that the two sets of computed results agree 
very well. 

5. CONCLUSIONS 

The usefulness of the proposed semi-implicit finite element scheme for three-dimensional free 
surface flow computations has been established by using systematic test problems. Since only 
nodal values on the same vertical line are coupled, the computer execution time is greatly 
reduced. Application of the proposed scheme to prototype flow simulations and verification of 
the computed results with field data are required before the scheme can be fully established and 
used for predictive purposes with confidence. This is now under investigation and will be reported 
in a future paper. 
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